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Abstract
Nondiffracting pulses are spatially and temporally localized wave fields that
undergo no diffractive spreading under propagation through homogeneous
media. We introduce an orthogonality condition for nondiffracting pulses
and present an orthogonal set of X waves which possess temporal spectra of
the form (polynomial in ω) × e−αω. The newly introduced Bessel-X pulses and
X-wave transforms are discussed in the framework of the orthogonal X-wave
bases.

PACS numbers: 42.25.−p, 84.40.−x, 43.20.+g, 02.30.Hq

1. Introduction

Orthogonal representations are essential in mathematical physics and they often provide deep
insight into physical phenomena. Nondiffracting beams [1] and pulses [2] are transverse-
localized wave fields which propagate in free space (or homogeneous media) without changing
their spatial profile. Moreover, all ideal nondiffracting waves feature superluminal phase—and
pulse—propagation without violating relativistic causality [3].

Nondiffracting waves are also called X waves, since their intensity pattern resembles
the letter ‘X’ in the meridional plane. In fact, the superluminal pulse only results from the
superposition of the conical wave fronts, limiting the signal velocity to that of light in vacuum.
Optical generation of nondiffracting waves is well-established [1, 4, 5], and new wave modes
are actively being reported [6, 7].

The first optical realization of the so-called Bessel-X pulses by Saari and Reivelt [8] led to
the idea of using the X waves in optical communication [9], which also could take advantage
of different orthogonal X-wave modes as separate communication channels. Additionally, the
new X-wave transform [10], which provides a general representation of all the waves in terms
of nondiffracting waves of different cone angles, crucially depends on the orthogonality of the
individual wave modes.
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In this paper, we present an orthogonality condition for nondiffracting waves and apply
it to derive an orthogonal basis for the X waves, i.e., nondiffracting pulses that are linear
combinations of waves having Fourier spectra of the form ωme−αω [11–13]. We also employ
orthogonal waves to represent Bessel-X pulses and discuss their physical properties.

2. Spectral X-wave representation

Nondiffracting waves are defined through the condition of uniform propagation,�(r, ϕ, z; t) =
�(r, ϕ, z − vt) where (r, ϕ, z) denote cylindrical spatial coordinates and v is the velocity
of propagation for the wave field. This condition leads to the Fourier representation of a
nondiffracting wave, given by [13]

�̃(k, ω) = F(ω, β)δ(k⊥ − ω sin ζ/c)δ(kz − ω cos ζ/c) (1)

where F(ω, β) is an arbitrary function and (k⊥, β, kz) denote cylindrical coordinates in
the wave vector space. The cone angle is defined via cos ζ = c/v. The axial and radial
wave vector components, kz and k⊥, are uniquely defined for each frequency ω, and the wave
vectors constitute a cone which opens from the kz-axis in the angle extended through ζ (hence
the name cone angle). Nondiffracting waves in the real space are obtained via inverse Fourier
transformation:

�(r, t) = 1

(2π)2

∫ ∞

0
dω
∫ ∞

−∞
dkz

∫ ∞

0
k⊥ dk⊥

×
∫ 2π

0
dβ �̃(k, ω) ei(xk⊥ cosβ+yk⊥ sinβ+zkz−ωt). (2)

We deliberately choose to limit our discussion to complex analytic signals, thus constraining
the temporal spectrum to positive frequencies only. Use of the Fourier series

F(ω, β) =
∞∑

n=−∞
(−i)n(2π/k⊥)fn(ω) einβ (3)

leads to the general integral representation for nondiffracting waves of azimuthal order n:

�n(r, t) = einϕ
∫ ∞

0
fn(ω)Jn(r(ω/c) sin ζ ) ei(z cos ζ/c−t)ω dω. (4)

Above, the complex exponential function defines the azimuthal order of the nondiffracting
wave, and the normalization factor (−i)n2π/k⊥ is added in equation (3) to cancel all the
constant factors in the above expression. This is the general representation for nondiffracting
waves with a fixed azimuthal order n and every nondiffracting wave can be obtained from
waves of this form by suitably weighing and summing over n. We call the function fn(ω) the
Fourier spectrum of the nth wave mode.

3. Orthogonality of nondiffracting waves

We now turn to consider the orthogonality condition for nondiffracting waves. Taking two
wave fields at a fixed time t, the ordinary L2 scalar product is defined as

〈�F |�G〉 =
∫ ∞

−∞
�∗
F (x, y, z; t)�G(x, y, z; t) dx dy dz. (5)

Here �F and �G represent two nondiffracting waves with the spectral functions F(ω, β)
and G(ω, β) and with the cone angles ζF and ζG, respectively. By inserting their Fourier
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representations into equation (5), their scalar product is given by (see the appendix for details
and discussion) the expression

〈�F |�G〉 = c

2π cos ζG

∣∣∣∣1 − tan ζG
tan ζF

∣∣∣∣
−1 ∫ 2π

0
dβ[|ω|F ∗(ω, β)G(ω, β)]ω=0 (6)

for waves with different cone angles. The scalar product between waves of different velocities
always has a finite value, provided that the spectral function does not diverge at zero frequency.
Note that this does not lead to a norm since it cannot be evaluated for a wave with itself. If
two waves share the same cone angle (velocity), they are orthogonal provided that∫ ∞

0
dω
∫ 2π

0
dβ ω F ∗(ω, β)G(ω, β) = 0. (7)

If, however, this integral is not zero, the scalar product diverges, reflecting the fact that
nondiffracting waves have infinite L2 norm, or, equivalently, they carry an infinite amount of
energy.

Using a series representation (equation (3)) for the spectral functions F and G, the
orthogonality condition may be cast into the form

∞∑
n=−∞

∫ ∞

0
f ∗
n (ω)gn(ω)ω

−1 dω = 0. (8)

Consequently, waves of different azimuthal orders n are always mutually orthogonal. The
space of nondiffracting waves consists of orthogonal subspaces which are characterized by
their azimuthal order, n.

4. Orthogonal X-wave basis

We define elementary X waves by choosing the specific spectral form given by (see [13] for
an extensive discussion)

fn(ω) = ωm e−αω. (9)

The spectrum contains two parameters: (i) the spectral order m which assumes positive integer
values, or zero, and (ii) the spectral attenuation factor α. Nondiffracting waves corresponding
to the spectrum of the form in equation (9) have closed-form algebraic expressions

�n,m(r, t) = (−1)∗n einϕ �(m + |n| + 1)(√
M
)m+1

(√
1 −Q
1 +Q

)|n|

×
m∑
k=0

(−1)k
(m + k)!/(m− k)!

(|n| + k)!

(1 −Q)k
2kk!

(10)

where M = τ 2 + β2 and Q = τ/
√
M with τ = α − i[(cos ζ )z/c − t] and b = r(sin ζ )/c,

while (−1)∗n = 1 for positive n and (−1)n for negative n. The whole set of X waves is defined
to consist of linear combinations

∞∑
n=−∞

∞∑
m=0

cn,m�n,m (11)

where the cn,m serve as complex weight functions for each elementary X wave. The �n,m
constitute a set of basis functions for all X waves but they do not feature any particular
normalization or orthogonality properties.
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Figure 1. Orthogonal spectra of orders 1 (solid line), 2 (dashed line), 3 (dotted line) and 4
(dashed–dotted line). Spectral functions have been evaluated for α = 4 fs.

We now turn to look for an orthogonal basis for nondiffracting waves. We require the
basis functions to be of a uniquely defined Bessel order, whence the spectra of two basis
functions (of the same Bessel order) have to satisfy∫ ∞

0
f ∗
n (ω)gn(ω)ω

−1 dω = 0. (12)

Prior to proceeding to the X waves, here we want to emphasize that equation (12) does not
represent a regular scalar product since it has a divergent 1/ω factor. Therefore, we limit our
consideration to such spectra for which the above expression has a finite value.

4.1. Orthogonal X waves

Since all nondiffracting waves can be uniquely separated into a sum of waves with different
azimuthal orders n, the same division also holds for the X waves. We therefore consider waves
given by equation (4) whose spectra have the X-wave form

fn(ω) = p(ω)e−αω (13)

where p(ω) is a polynomial of arbitrary degree. Two such waves are orthogonal provided that∫ ∞

0
p1(ω)p2(ω)ω

−1 e−2αω dω = 0. (14)

This condition is satisfied for

fn(ω) = hq(ω) = 2αω√
q + 1

L(1)q (2αω) e−αω =
q∑
l=0

(−1)l√
q + 1

(
q + 1
q − l

)
(2α)l+1

l!
ωl+1 e−αω (15)

where L(1)q are generalized Laguerre polynomials (see figure 1). The orthogonality of the
spectra follows directly from the orthogonality properties of Laguerre polynomials:
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0
hq(ω)hp(ω)ω

−1 dω = 1√
(q + 1)(p + 1)

∫ ∞

0
L(1)q (s)L

(1)
p (s)e

−s s ds = δq,p (16)

where s = 2αω.
Here we observe an interesting property: since a Laguerre polynomialL(1)q is a polynomial

of order q, each spectrum in this orthogonal set is given by a polynomial of order (q + 1).
Consequently, the orthogonal set does not contain the zeroth-order wave given by fn(ω) =
e−αω, i.e., the fundamental X wave. This is due to the divergent factor 1/k⊥ ∝ 1/ω in the
Fourier representation of the wave [13]. Although it actually cancels out in the

∫∞
0 k⊥ dk⊥

integration, this factor causes the spectrum of the wave to diverge for low frequencies. It
is possible to find a set of waves with higher order spectra that are all orthogonal to the
‘fundamental’ wave but they do not contain the polynomial of degree 1. Suppose that such a
polynomial exists. Then the orthogonality relation with the fundamental wave reads∫ ∞

0
p1(ω)e−2αωω−1 dω. (17)

This diverges at the origin, except for p1(ω) = Cω. In the latter case, we have

C

∫ ∞

0
e−2αω dω = C

2α
= 0. (18)

It follows, therefore, that there are no such first-order polynomial X waves that would be
orthogonal to the fundamental wave. (Note the choice of the spectrum in [14].)

Using spectra of the form given in equation (15), the orthogonal set of X waves assumes
the form

�ort
n,q(r, t) =

q∑
l=0

(−1)l√
q + 1

(
q + 1
q − l

)
(2α)l+1

l!
�n,l+1(r, t). (19)

Consequently, they form an orthogonal basis for the (linear space of ) X waves from which the
waves of spectral order zero have been excluded. For illustrations of the first four orthogonal
wave forms, see figure 2.

5. Applications of orthogonal X waves

In this section we discuss some potential applications of orthogonal X waves.

5.1. Bessel-X waves

Pulsed optical Bessel beams, or Bessel-X waves [8], are ultrashort (∼fs) nondiffracting light
pulses whose spectrum is approximately represented as [5]

S(ω) = S0

√
ω

ω0
e−τ 2(ω−ω0)

2
(20)

where ω0 is the carrier frequency, τ−1 characterizes the spectral width of the pulse and S0 is
a constant. Here we use orthogonal X waves to approximate the Bessel-X wave (denoted as
�BX):

�BX(r, t) =
N∑
q=0

cq�
ort
0,q (r, t). (21)

We note that the above expansion coefficients cq depend on the attenuation constant α which
is contained in �ort

n,q(r, t). In figure 3, we show a Bessel-X wave spectrum for the carrier
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Figure 2. First four orthogonal X waves,�ort
n,q . Orthogonal X waves feature an increasing number

of ‘halo wave fronts’ (or ‘halo toroids’ [8]), required for making the scalar product between
different wave modes vanish.

(angular) frequency ω0 = 3.14 × 1015 s−1 and pulse duration (FWHM) 3 fs, together with its
approximants having 5, 10 and 15 terms.

In figure 3, the approximation with the first five terms shows no clear resemblance to the
actual spectrum, while that with 15 terms appears physically adequate. Very good agreement
is achieved already for 20 terms. The Bessel-X pulse containing 20 orthogonal components
is shown in figure 4. The number of terms strongly depends on the spectral width and the
carrier frequency of the Bessel-X spectrum and it is smallest when the two are of the same
magnitude. Hence, the orthogonal expansion using �ort

n,q is useful for ultrashort pulses which
can be used to derive analytic (though approximate) expressions.

5.2. Detection and generation

From the practical point of view, the question arises how to produce and measure orthogonal
X waves. First, we point out that the orthogonality condition was derived based on the signal
in all space at a fixed time. Physical measurements, on the other hand, are usually performed
using a planar detector, with a time-dependent measurement result. This, however, does not
affect the orthogonality since nondiffracting waves only depend on (z − vt); therefore, the
spatial z integration can always be replaced with a temporal integration at fixed z.

Another physical observation is that to experimentally detect different orthogonal
components carried by an X wave, amplitude information is needed instead of intensity.
Hence, in the range of optical frequencies, interferometric measurement is needed. For radio
frequencies where nondiffracting waves have recently been produced, both with axicons [15]
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Figure 3. Approximate representations for a Bessel-X pulse spectrum: (left) solid line shows
the exact Bessel-X wave spectrum while orthogonal representations of ascending order are shown
by the dashed line (N = 5), the dashed–dotted line (N = 10) and the dotted line (N = 15). An
orthogonal expansion for N � 20 does not visibly differ from S(ω). (Right) relative weights cq of
different orthogonal components. Here, α = 6.2 fs; this value was chosen for optimal convergence.

Figure 4. Intensity of the Bessel-X pulse as given by equation (21) with 20 terms to be compared
with figure 1(a) in [5]. The pulse duration (FWHM) is 3 fs, carrier frequency ω0 = 3.14×1015 s−1

and α = 6.2 fs. The area illustrated in this meridional plane is 20 × 20µm2.

and computer holograms [16], phase-sensitive measurements are easily carried out and an
experimental distinction between the different wave modes is feasible.

Finally, the generation of orthogonal wave modes requires sensitive spatiotemporal control
of the emitted field and, as such, poses challenges for the optical instrumentation. However,
novel methods have been developed, for example, to generate focus-wave modes [17], and
similar techniques can also be used for the new X waves.
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5.3. X-wave transform

Finally, we would like to compare the orthogonality of X waves and the newly presented X-
wave transform [10]. The X-wave transform provides a general way of representing ordinary
(diffracting) waves using a superposition of nondiffracting waves of different cone angles ζ ,
azimuthal orders n and spectra. As we have also concluded, the X-wave components with
differents ζ and n are orthogonal by construction, which is already intrinsically used in an
X-wave transform. However, heretofore, no orthogonal expansion has been given in the
literature for the spectrum within the X-wave transform and, if such is needed, orthogonal X
waves provide a tool for that purpose.

6. Conclusions

We have presented an orthogonality condition for nondiffracting waves and derived an
orthogonal set of (polynomial) X waves, which can be used to expand other nondiffracting
waves in terms of analytically known solutions. In particular, we have demonstrated that
a Bessel-X wave-type spectrum can be expressed with orthogonal X wave spectra and,
consequently, the Bessel-X wave itself can be represented as a sum of orthogonal X waves.

Recently, applications have been proposed for pulsed optical X waves both in the context
of image transmission [5] and optical communications [9]. We expect that both of these
fields could benefit from the possibility of using spatially orthogonal pulse forms which allow
separate transmission channels.
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Appendix. Derivation of the spectral scalar product for X waves

The three-dimensional (spatial) scalar product of two nondiffracting wave fields at the same
instant of time, t, is given by equation (5). By substituting the Fourier representations of the
waves (equation (1)) it assumes the form

〈�F |�G〉 = 1

2π

∫ ∞

0
dω1

∫ ∞

−∞
dkz1

∫ ∞

0
k⊥1dk⊥1

∫ 2π

0
dβ1 �̃

∗
F (k, ω)e

iω1 t

×
∫ ∞

0
dω2

∫ ∞

−∞
dkz2

∫ ∞

0
k⊥2dk⊥2

∫ 2π

0
dβ2 �̃G(k, ω)e−iω2 t

× δ(k⊥1 cosβ1 − k⊥2 cosβ2)δ(k⊥1 sin β1 − k⊥2 sin β2)δ(kz1 − kz2). (A.1)

Integrating all the delta functions (also those within the �̃), the scalar product becomes

〈�F |�G〉 = c

2π cos ζG

∣∣∣∣1 − tan ζG
tan ζF

∣∣∣∣
−1 ∫ 2π

0
dβ1

[
ω1F

∗(ω1, β1)G(ω1, β1)
]
ω1=0 (A.2)

if the waves have different velocities of propagation, i.e., different cone angles. The fact that
only the zero-frequency component contributes to the scalar product may be understood as
follows. In the wave vector space, the Fourier representation of the nondiffracting wave field
is strictly confined to a cone that opens with an angle given by ζ around the kz-axis. If two
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waves have different cone angles, the overlap of their Fourier support is simply the origin,
and it is met for ω = 0. Within optics, this corresponds to the dc component of the field and
has, therefore, no physical consequences. Furthermore, for all orthogonal X waves discussed
in this paper, the spectrum F(ω, β) is bounded for ω → 0 and the scalar product vanishes.
Another interpretation for this result is that in real space, most of the wave energy lies on the
cones of propagation which do not overlap for waves with different velocities. If, however,
the wave spectrum F(ω, β) diverges for ω = 0 (or, equivalently, the Fourier spectrum fn(ω)
does not tend to zero for ω → 0), the wave energy is not bound to the cone of propagation
and the integral in the scalar product is dominated by the asymptotic domain away from the
axis of propagation.

On the other hand, if the two waves propagate with the same velocity, their scalar
product is

〈�F |�G〉 = c

2π cos ζ

∫ ∞

0
dω1

∫ ∞

0
k⊥1 dk⊥1

×
∫ 2π

0
dβ1 F

∗(ω1, β1)G(ω1, β1)δ
2(k⊥1 − ω1 sin ζ/c)

= R tan ζ

2π2

∫ ∞

0
ω1 dω1

∫ 2π

0
dβ1F

∗(ω1, β1)G(ω1, β1). (A.3)

Here the integration is formally extended only over a cylinder of radius R since nondiffracting
waves are not square integrable over the entire space. If the integral involved yields zero,
the waves are orthogonal for R → ∞, whereas, in the opposite case, this limit results in a
divergence reflecting the infinite energy (and divergent L2 norm) of ideal nondiffracting waves.
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